Seminar: Elliptic curves and the Weil conjectures

The Dual Isogeny

Johannes Loher

July 20, 2016

Theorem 1. Let $\phi: E_{1} \rightarrow E_{2}$ be a nonconstant isogeny of degree m.
(a) There is a unique isogeny

$$
\hat{\phi}: E_{2} \rightarrow E_{1} \quad \text { satisfying } \quad \hat{\phi} \circ \phi=[m] .
$$

(b) As a group homomorphism, $\hat{\phi}$ equals the composition

$$
\begin{aligned}
E_{2} & \operatorname{Div}^{0}\left(E_{2}\right) \xrightarrow{\phi^{*}} \operatorname{Div}^{0}\left(E_{1}\right) \xrightarrow{\text { sum }} E_{1}, \\
Q & (Q)-(O) \quad \sum n_{P}(P) \longmapsto \sum\left[n_{p}\right] P .
\end{aligned}
$$

Proof. (a) First we show uniqueness. Suppose that $\hat{\phi}$ and $\hat{\phi}^{\prime}$ are two such isogenies, then

$$
(\hat{\phi}-\hat{\phi}) \circ \phi=[m]-[m]=0 .
$$

Because ϕ is nonconstant, the map $\hat{\phi}-\hat{\phi}$ must be constant and thus equal to [0]. So $\hat{\phi}=\hat{\phi}^{\prime}$.
Now suppose that $\psi: E_{2} \rightarrow E_{3}$ is another nonconstant isogeny of degree n and suppose that $\hat{\phi}$ and $\hat{\psi}$ exist. Then

$$
(\hat{\phi} \circ \hat{\psi}) \circ(\psi \circ \phi)=\hat{\phi} \circ[n] \circ \phi=[n] \circ \hat{\phi} \circ \phi=[n m] .
$$

So $\hat{\phi} \circ \hat{\phi}$ has the defining property of $\widehat{\psi \circ \phi}$. If $\operatorname{char}(K)=0$, then ϕ is separable and if $\operatorname{char}(K)=p>0$, then by [II.2.12 Sil09] we can write ϕ as the composition of a separable morphism and a Frobenius morphism. Thus it suffices to show the existence of $\hat{\phi}$ when ϕ is either separable or a Frobenius morphism.
Case 1. ϕ is separable Because ϕ has degree m, by [III.4.10c Sil09] we have

$$
\# \operatorname{ker} \phi=m
$$

so every element of $\operatorname{ker} \phi$ has order dividing m. Hence

$$
\operatorname{ker} \phi \subset \operatorname{ker}[m]
$$

and by [III.4.11 Sil09] it follows that there is an isogeny

$$
\hat{\phi}: E_{2} \rightarrow E_{1} \quad \text { satisfying } \quad \hat{\phi} \circ \phi=[m] .
$$

Case 2. ϕ is a Frobenius morphism If ϕ is the $q^{\text {th }}$-power Frobenius morphism with $q=p^{e}$, then ϕ is the composition of the $p^{\text {th }}$-power Frobenius morphism with itself e times. Thus it suffices to consider the case that ϕ is the $p^{\text {th }}$-power Frobenius morphism. So by [II.2.11 Sil09] we have $\operatorname{deg} \phi=p$.

We now consider the map $[p]$ on E. Let ω be an invariant differential, then by [III.5.3 Sil09] and the fact that $\operatorname{char}(K)=p$, it follows that

$$
[p]^{*} \omega=p \omega=0
$$

Hence by [II.4.2c Sil09] the map $[p]$ is not separable, and thus when we decompose $[p]$ as a Frobenius morphism followed by a separable map, the Frobenius morphism does appear:

$$
[p]=\psi \circ \phi^{e}
$$

for some integer $e \geq 1$ and some separable isogeny ψ. Then the map

$$
\hat{\phi}=\psi \circ \phi^{e-1}
$$

has the desired property.
(b) Let $Q \in E_{2}$, and $P \in \phi^{-1}(Q)$, then the image of Q under the indicated composition is

$$
\begin{array}{rlrl}
\operatorname{sum}\left(\phi^{*}((Q)-(O))\right) & =\sum_{P^{\prime} \in \phi^{-1}(Q)}\left[e_{\phi}\left(P^{\prime}\right)\right] P^{\prime}-\sum_{T \in \phi^{-1}(O)}\left[e_{\phi}(T)\right] T & \text { by definition of } \phi^{*}, \\
& =\left[\operatorname{deg}_{i} \phi\right]\left(\sum_{P^{\prime} \in \phi^{-1}(Q)} P^{\prime}-\sum_{T \in \phi^{-1}(O)} T\right) & & \text { from [III.4.10a Sil09], } \\
& =\left[\operatorname{deg}_{i} \phi\right] \circ\left[\# \phi^{-1}(Q)\right] P & \\
& =[\operatorname{deg} \phi] P & & \text { from [III.4.10a Sil09]. }
\end{array}
$$

By construction,

$$
\hat{\phi}(Q)=\hat{\phi} \circ \phi(P)=[\operatorname{deg} \phi] P,
$$

so the two maps are the same.

Definition 2 (Dual isogeny). Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny. If $\phi \neq[0]$, then the dual isogeny to ϕ is the isogeny given by Theorem 1 a). Otherwise it is defined to be [0].

We will now present some basic properties of the dual isogeny, from which we will deduce several important corollaries, including a good description of the kernel of the map $[m]$.

Theorem 3. Let $\phi: E_{1} \rightarrow E_{2}$ be an isogeny.
a) Let $m=\operatorname{deg} \phi$, then

$$
\hat{\phi} \circ \phi=[m] \text { on } E_{1} \quad \text { and } \quad \phi \circ \hat{\phi}=[m] \text { on } E_{2} .
$$

b) Let $\lambda: E_{2} \rightarrow E_{3}$ be another isogeny. Then

$$
\widehat{\lambda \circ \phi}=\hat{\phi} \circ \hat{\lambda} .
$$

c) Let $\psi: E_{1} \rightarrow E_{2}$ be another isogeny. Then

$$
\widehat{\phi+\psi}=\hat{\phi}+\hat{\psi} .
$$

d) For all $m \in \mathbb{Z}$,

$$
\widehat{[m]}=[m] \quad \text { and } \quad \operatorname{deg}[m]=m^{2} .
$$

e) $\operatorname{deg} \hat{\phi}=\operatorname{deg} \phi$.
f) $\hat{\hat{\phi}}=\phi$.

Proof. If ϕ is constant, then the theorem is trivial, and if λ and ψ are constant, then b) and c) are trivial. So we can assume all isogenies to be nonconstant.
a) The first statement is the defining property of $\hat{\phi}$. For the second consider

$$
(\phi \circ \hat{\phi}) \circ \phi=\phi \circ[m]=[m] \circ \phi .
$$

Because ϕ is nonconstant, this implies $\phi \circ \hat{\phi}=[m]$.
b) We have already seen this in the proof of Theorem 1 a).
c) See [III.6.3c Sil09].
d) By definition, this is true for $m=0$ and it is trivial for $m=1$. By using c) with $\phi=[m]$ and $\psi=[1]$, we obtain

$$
[\widehat{m+1}]=\widehat{[m]}+\widehat{[1]} .
$$

Then, by induction we see that $\widehat{[m]}=[m]$ for all $m \in \mathbb{Z}$.
Now let $d=\operatorname{deg}[m]$ and consider the map [d]:

$$
[d]=\widehat{[m]} \circ[m]=[m] \circ[m]=\left[m^{2}\right]
$$

By [III.4.2b Sil09], the endomorphism ring of an elliptic curve is a torsion free \mathbb{Z} module, so it follows that $d=m^{2}$.
e) Let $m=\operatorname{deg} \phi$, then by d) and a), we obtain

$$
m^{2}=\operatorname{deg}[m]=\operatorname{deg}(\phi \circ \hat{\phi})=(\operatorname{deg} \phi)(\operatorname{deg} \hat{\phi})=m(\operatorname{deg} \hat{\phi}) .
$$

Thus $m=\operatorname{deg} \hat{\phi}$.
f) Again, let $m=\operatorname{deg} \phi$, then by a), b) and d), we obtain

$$
\hat{\phi} \circ \phi=[m]=\widehat{[m]}=\widehat{\hat{\phi} \circ \phi}=\hat{\phi} \circ \hat{\hat{\phi}}
$$

Therefore $\phi=\hat{\hat{\phi}}$.

Definition 4 (quadratic form). Let A be an abelian group. A function

$$
d: A \rightarrow \mathbb{R}
$$

is a quadratic form, if it satisfies the following conditions
i) $d(\alpha)=d(-\alpha)$ for all $\alpha \in A$.
ii) The pairing

$$
A \times A \rightarrow \mathbb{R},(\alpha, \beta) \mapsto d(\alpha+\beta)-d(\alpha)-d(\beta)
$$

is bilinear.
A quadratic form d is positive definite if it further satisfies the following conditions:
iii) $d(\alpha) \geq 0$ for all $\alpha \in A$
iv) $d(\alpha)=0$ if and only if $\alpha=0$

Corollary 5. Let E_{1} and E_{2} be elliptic curves. The degree map

$$
\operatorname{deg}: \operatorname{Hom}\left(E_{1}, E_{2}\right) \rightarrow \mathbb{Z}
$$

is a positive definite quadratic form.

Proof. Everything is clear except for the fact that the pairing

$$
\langle\phi, \psi\rangle=\operatorname{deg}(\phi+\psi)-\operatorname{deg}(\phi)-\operatorname{deg}(\psi)
$$

is bilinear. To proof this, we use the injection

$$
[-]: \mathbb{Z} \rightarrow \operatorname{End}\left(E_{1}\right)
$$

and compute

$$
\begin{aligned}
{[\langle\phi, \psi\rangle] } & =[\operatorname{deg}(\phi+\psi)]-[\operatorname{deg}(\phi)]-[\operatorname{deg}(\psi)] \\
& =\widehat{\phi+\psi} \circ(\phi+\psi)-\hat{\phi} \circ \phi-\hat{\psi} \circ \psi \\
& =\hat{\phi} \circ \psi+\hat{\psi} \circ \phi \quad \text { from Theorem } 3 \mathrm{c})
\end{aligned}
$$

Using Theorem 3 c again, we see that the last expression is linear in both ϕ and ψ.

Lemma 6. Let A be a finte abelian group of order N^{r} and suppose that for every $D \mid N$, we have $\# A[D]=D^{r}$, where $A[D]$ is the subgroup of A consisting of all elements of order D. Then

$$
A \cong\left(\frac{\mathbb{Z}}{N \mathbb{Z}}\right)^{r}
$$

Corollary 7. Let E be an elliptic curve and let $m \in \mathbb{Z}$ with $m \neq 0$.
a) if $m \neq 0$ in K, then

$$
E[m]=\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{m \mathbb{Z}}
$$

b) If $\operatorname{char}(K)=p>0$, then one of the following is true:
i) $E\left[p^{e}\right]=\{O\}$ for all $e \in \mathbb{N} \backslash\{0\}$.
ii) $E\left[p^{e}\right]=\frac{\mathbb{Z}}{p^{e} \mathbb{Z}}$ for all $e \in \mathbb{N} \backslash\{0\}$

Proof. a) By the assumption on m and the fact, that $\operatorname{deg}[m]=m^{2}$, we know that $[m]$ is a finite separable map. So from [III.4.10c Sil09],

$$
\# E[m]=\operatorname{deg}[m]=m^{2}
$$

Similarly, for every integer d dividing M we have

$$
\# E[d]=d^{2}
$$

Then by Lemma 6,

$$
E[m]=\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{m \mathbb{Z}}
$$

b) Let ϕ be the $p^{\text {th }}$-power Frobenius morphism. Then

$$
\# E\left[p^{e}\right]=\operatorname{deg}_{s}\left[p^{e}\right]
$$

$$
\left.=\left(\operatorname{deg}_{s}(\hat{\phi} \circ \phi)\right)^{e} \quad \text { from Theorem } 3 \mathrm{a}\right)
$$

$$
=\left(\operatorname{deg}_{s} \hat{\phi}\right)^{e} \quad \text { from [II.2.11b Sil09]. }
$$

By Theorem 3e) and [II.2.11c Sil09, we have

$$
\operatorname{deg} \hat{\phi}=\operatorname{deg} \phi=p
$$

so there are two possible cases. If $\hat{\phi}$ is inseparable, then $\operatorname{deg}_{s} \hat{\phi}=1$, so

$$
\# E\left[p^{e}\right]=1 \quad \text { for all } e \in \mathbb{N} \backslash\{0\}
$$

Otherwise $\hat{\phi}$ is separable, so $\operatorname{deg}_{s} \hat{\phi}=p$ and thus

$$
\# E\left[p^{e}\right]=p^{e} \quad \text { for all } e \in \mathbb{N} \backslash\{0\} .
$$

Then we verify that this actually implies

$$
E\left[p^{e}\right]=\frac{\mathbb{Z}}{p^{e} \mathbb{Z}} \quad \text { for all } e \in \mathbb{N} \backslash\{0\} .
$$

Bibliography

[Sil09] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. Springer New York, 2009. ISBN: 9780387094946 . url: https://books. google.de/books?id=Z90CA_EUCCkC.

