Seminar: Elliptic curves and the Weil conjectures

The Dual Isogeny

Johannes Loher

July 20, 2016

Theorem 1. Let $\phi: E_1 \to E_2$ be a nonconstant isogeny of degree m.

(a) There is a unique isogeny

$$\hat{\phi} \colon E_2 \to E_1 \qquad satisfying \qquad \hat{\phi} \circ \phi = [m].$$

(b) As a group homomorphism, $\hat{\phi}$ equals the composition

$$E_2 \longrightarrow \operatorname{Div}^0(E_2) \xrightarrow{\phi^*} \operatorname{Div}^0(E_1) \xrightarrow{\operatorname{sum}} E_1,$$
$$Q \longmapsto (Q) - (O) \qquad \sum n_P(P) \longmapsto \sum [n_p] P.$$

Proof. (a) First we show uniqueness. Suppose that $\hat{\phi}$ and $\hat{\phi}'$ are two such isogenies, then

$$(\hat{\phi} - \hat{\phi}) \circ \phi = [m] - [m] = 0.$$

Because ϕ is nonconstant, the map $\hat{\phi} - \hat{\phi}$ must be constant and thus equal to [0]. So $\hat{\phi} = \hat{\phi}'$.

Now suppose that $\psi: E_2 \to E_3$ is another nonconstant isogeny of degree n and suppose that $\hat{\phi}$ and $\hat{\psi}$ exist. Then

$$(\hat{\phi} \circ \hat{\psi}) \circ (\psi \circ \phi) = \hat{\phi} \circ [n] \circ \phi = [n] \circ \hat{\phi} \circ \phi = [nm].$$

So $\hat{\phi} \circ \hat{\phi}$ has the defining property of $\widehat{\psi \circ \phi}$. If $\operatorname{char}(K) = 0$, then ϕ is separable and if $\operatorname{char}(K) = p > 0$, then by [II.2.12 Sil09] we can write ϕ as the composition of a separable morphism and a Frobenius morphism. Thus it suffices to show the existence of $\hat{\phi}$ when ϕ is either separable or a Frobenius morphism.

Case 1. ϕ is separable Because ϕ has degree m, by [III.4.10c Sil09] we have

$$\# \ker \phi = m,$$

so every element of ker ϕ has order dividing m. Hence

$$\ker \phi \subset \ker[m]$$

and by [III.4.11 Sil09] it follows that there is an isogeny

$$\hat{\phi} \colon E_2 \to E_1$$
 satisfying $\hat{\phi} \circ \phi = [m].$

Case 2. ϕ is a Frobenius morphism If ϕ is the q^{th} -power Frobenius morphism with $q = p^e$, then ϕ is the composition of the p^{th} -power Frobenius morphism with itself e times. Thus it suffices to consider the case that ϕ is the p^{th} -power Frobenius morphism. So by [II.2.11 Sil09] we have deg $\phi = p$.

We now consider the map [p] on E. Let ω be an invariant differential, then by [III.5.3 Sil09] and the fact that char(K) = p, it follows that

$$[p]^*\omega = p\omega = 0.$$

Hence by [II.4.2c Sil09] the map [p] is not separable, and thus when we decompose [p] as a Frobenius morphism followed by a separable map, the Frobenius morphism does appear:

$$[p] = \psi \circ \phi^e$$

for some integer $e \ge 1$ and some separable isogeny ψ . Then the map

 $\hat{\phi}=\psi\circ\phi^{e-1}$

has the desired property.

(b) Let $Q \in E_2$, and $P \in \phi^{-1}(Q)$, then the image of Q under the indicated composition is

$$sum(\phi^{*}((Q) - (O))) = \sum_{P' \in \phi^{-1}(Q)} [e_{\phi}(P')]P' - \sum_{T \in \phi^{-1}(O)} [e_{\phi}(T)]T \text{ by definition of } \phi^{*},$$
$$= [\deg_{i} \phi] \left(\sum_{P' \in \phi^{-1}(Q)} P' - \sum_{T \in \phi^{-1}(O)} T\right) \text{ from [III.4.10a Sil09]},$$
$$= [\deg_{i} \phi] \circ [\#\phi^{-1}(Q)]P$$
$$= [\deg \phi]P \text{ from [III.4.10a Sil09]}.$$

By construction,

$$\hat{\phi}(Q) = \hat{\phi} \circ \phi(P) = [\deg \phi]P,$$

so the two maps are the same.

Definition 2 (Dual isogeny). Let $\phi: E_1 \to E_2$ be an isogeny. If $\phi \neq [0]$, then the **dual** isogeny to ϕ is the isogeny given by Theorem 1 a). Otherwise it is defined to be [0].

We will now present some basic properties of the dual isogeny, from which we will deduce several important corollaries, including a good description of the kernel of the map [m].

Theorem 3. Let $\phi: E_1 \to E_2$ be an isogeny.

a) Let $m = \deg \phi$, then

$$\hat{\phi} \circ \phi = [m] \text{ on } E_1 \text{ and } \phi \circ \hat{\phi} = [m] \text{ on } E_2.$$

b) Let $\lambda: E_2 \to E_3$ be another isogeny. Then

$$\widehat{\lambda \circ \phi} = \widehat{\phi} \circ \widehat{\lambda}.$$

c) Let $\psi: E_1 \to E_2$ be another isogeny. Then

$$\widehat{\phi + \psi} = \widehat{\phi} + \widehat{\psi}$$

d) For all $m \in \mathbb{Z}$,

$$\widehat{[m]} = [m] \quad and \quad \deg[m] = m^2.$$

 $e) \ \deg \hat{\phi} = \deg \phi.$

f)
$$\phi = \phi$$

Proof. If ϕ is constant, then the theorem is trivial, and if λ and ψ are constant, then b) and c) are trivial. So we can assume all isogenies to be nonconstant.

a) The first statement is the defining property of $\hat{\phi}$. For the second consider

$$(\phi \circ \hat{\phi}) \circ \phi = \phi \circ [m] = [m] \circ \phi.$$

Because ϕ is nonconstant, this implies $\phi \circ \hat{\phi} = [m]$.

- b) We have already seen this in the proof of Theorem 1 a).
- c) See [III.6.3c Sil09].
- d) By definition, this is true for m = 0 and it is trivial for m = 1. By using c) with $\phi = [m]$ and $\psi = [1]$, we obtain

$$\widehat{[m+1]} = \widehat{[m]} + \widehat{[1]}.$$

Then, by induction we see that $\widehat{[m]} = [m]$ for all $m \in \mathbb{Z}$.

Now let $d = \deg[m]$ and consider the map [d]:

$$[d] = [m] \circ [m] = [m] \circ [m] = [m^2]$$

By [III.4.2b Sil09], the endomorphism ring of an elliptic curve is a torsion free \mathbb{Z} -module, so it follows that $d = m^2$.

e) Let $m = \deg \phi$, then by d) and a), we obtain

$$m^2 = \deg[m] = \deg(\phi \circ \hat{\phi}) = (\deg \phi)(\deg \hat{\phi}) = m(\deg \hat{\phi}).$$

Thus $m = \deg \hat{\phi}$.

f) Again, let $m = \deg \phi$, then by a), b) and d), we obtain

$$\hat{\phi} \circ \phi = [m] = \widehat{[m]} = \widehat{\phi} \circ \phi = \hat{\phi} \circ \hat{\phi}.$$

Therefore $\phi = \hat{\phi}$.

Definition 4 (quadratic form). Let A be an abelian group. A function

$$d\colon A\to\mathbb{R}$$

is a quadratic form, if it satisfies the following conditions

- i) $d(\alpha) = d(-\alpha)$ for all $\alpha \in A$.
- ii) The pairing

$$A \times A \to \mathbb{R}, \ (\alpha, \beta) \mapsto d(\alpha + \beta) - d(\alpha) - d(\beta)$$

is bilinear.

A quadratic form d is **positive definite** if it further satisfies the following conditions:

- iii) $d(\alpha) \ge 0$ for all $\alpha \in A$
- iv) $d(\alpha) = 0$ if and only if $\alpha = 0$

Corollary 5. Let E_1 and E_2 be elliptic curves. The degree map

deg: Hom $(E_1, E_2) \to \mathbb{Z}$

is a positive definite quadratic form.

Proof. Everything is clear except for the fact that the pairing

$$\langle \phi, \psi \rangle = \deg(\phi + \psi) - \deg(\phi) - \deg(\psi)$$

is bilinear. To proof this, we use the injection

$$[-]: \mathbb{Z} \to \operatorname{End}(E_1)$$

and compute

$$\begin{split} [\langle \phi, \psi \rangle] &= [\deg(\phi + \psi)] - [\deg(\phi)] - [\deg(\psi)] \\ &= \widehat{\phi + \psi} \circ (\phi + \psi) - \widehat{\phi} \circ \phi - \widehat{\psi} \circ \psi \\ &= \widehat{\phi} \circ \psi + \widehat{\psi} \circ \phi \quad \text{from Theorem 3 c)} \end{split}$$

Using Theorem 3 c again, we see that the last expression is linear in both ϕ and ψ . \Box

Lemma 6. Let A be a finite abelian group of order N^r and suppose that for every $D \mid N$, we have $\#A[D] = D^r$, where A[D] is the subgroup of A consisting of all elements of order D. Then

$$A \cong \left(\frac{\mathbb{Z}}{N\mathbb{Z}}\right)^r.$$

Corollary 7. Let E be an elliptic curve and let $m \in \mathbb{Z}$ with $m \neq 0$.

a) if $m \neq 0$ in K, then

$$E[m] = \frac{\mathbb{Z}}{m\mathbb{Z}} \times \frac{\mathbb{Z}}{m\mathbb{Z}}.$$

- b) If char(K) = p > 0, then one of the following is true:
 - *i*) $E[p^e] = \{O\}$ for all $e \in \mathbb{N} \setminus \{0\}$. *ii*) $E[p^e] = \frac{\mathbb{Z}}{p^e \mathbb{Z}}$ for all $e \in \mathbb{N} \setminus \{0\}$
- *Proof.* a) By the assumption on m and the fact, that $deg[m] = m^2$, we know that [m] is a finite separable map. So from [III.4.10c Sil09],

$$#E[m] = \deg[m] = m^2.$$

Similarly, for every integer d dividing M we have

$$#E[d] = d^2.$$

Then by Lemma 6,

$$E[m] = \frac{\mathbb{Z}}{m\mathbb{Z}} \times \frac{\mathbb{Z}}{m\mathbb{Z}}.$$

b) Let ϕ be the p^{th} -power Frobenius morphism. Then

$$#E[p^e] = \deg_s[p^e] \qquad \text{from [III.4.10a Sil09]} = (\deg_s(\hat{\phi} \circ \phi))^e \qquad \text{from Theorem 3 a)} = (\deg_s \hat{\phi})^e \qquad \text{from [II.2.11b Sil09].}$$

By Theorem 3 e) and [II.2.11c Sil09], we have

$$\deg \hat{\phi} = \deg \phi = p,$$

so there are two possible cases. If $\hat{\phi}$ is inseparable, then deg_s $\hat{\phi} = 1$, so

$$#E[p^e] = 1 \quad \text{for all } e \in \mathbb{N} \setminus \{0\}.$$

Otherwise $\hat{\phi}$ is separable, so $\deg_s \hat{\phi} = p$ and thus

$$#E[p^e] = p^e \quad \text{for all } e \in \mathbb{N} \setminus \{0\}.$$

Then we verify that this actually implies

$$E[p^e] = \frac{\mathbb{Z}}{p^e \mathbb{Z}}$$
 for all $e \in \mathbb{N} \setminus \{0\}$.

Bibliography

[Sil09] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. Springer New York, 2009. ISBN: 9780387094946. URL: https://books. google.de/books?id=Z90CA%5C_EUCCkC.