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Theorem 1. Let φ : E1 → E2 be a nonconstant isogeny of degree m.

(a) There is a unique isogeny

φ̂ : E2 → E1 satisfying φ̂ ◦ φ = [m].

(b) As a group homomorphism, φ̂ equals the composition

E2 Div0(E2) Div0(E1) E1,

Q (Q)− (O)
∑
nP (P )

∑
[np]P.

φ∗ sum

Proof. (a) First we show uniqueness. Suppose that φ̂ and φ̂′ are two such isogenies, then

(φ̂− φ̂) ◦ φ = [m]− [m] = 0.

Because φ is nonconstant, the map φ̂ − φ̂ must be constant and thus equal to [0].
So φ̂ = φ̂′.

Now suppose that ψ : E2 → E3 is another nonconstant isogeny of degree n and
suppose that φ̂ and ψ̂ exist. Then

(φ̂ ◦ ψ̂) ◦ (ψ ◦ φ) = φ̂ ◦ [n] ◦ φ = [n] ◦ φ̂ ◦ φ = [nm].

So φ̂ ◦ φ̂ has the defining property of ψ̂ ◦ φ. If char(K) = 0, then φ is separable
and if char(K) = p > 0, then by [II.2.12 Sil09] we can write φ as the composition
of a separable morphism and a Frobenius morphism. Thus it suffices to show the
existence of φ̂ when φ is either separable or a Frobenius morphism.

Case 1. φ is separable Because φ has degree m, by [III.4.10c Sil09] we have

# kerφ = m,

so every element of kerφ has order dividing m. Hence

kerφ ⊂ ker[m]

and by [III.4.11 Sil09] it follows that there is an isogeny

φ̂ : E2 → E1 satisfying φ̂ ◦ φ = [m].

Case 2. φ is a Frobenius morphism If φ is the qth-power Frobenius morphism with
q = pe, then φ is the composition of the pth-power Frobenius morphism with
itself e times. Thus it suffices to consider the case that φ is the pth-power
Frobenius morphism. So by [II.2.11 Sil09] we have deg φ = p.
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We now consider the map [p] on E. Let ω be an invariant differential, then by
[III.5.3 Sil09] and the fact that char(K) = p, it follows that

[p]∗ω = pω = 0.

Hence by [II.4.2c Sil09] the map [p] is not separable, and thus when we decom-
pose [p] as a Frobenius morphism followed by a separable map, the Frobenius
morphism does appear:

[p] = ψ ◦ φe

for some integer e ≥ 1 and some separable isogeny ψ. Then the map

φ̂ = ψ ◦ φe−1

has the desired property.

(b) Let Q ∈ E2, and P ∈ φ−1(Q), then the image of Q under the indicated composition
is

sum(φ∗((Q)− (O))) =
∑

P ′∈φ−1(Q)
[eφ(P ′)]P ′ −

∑
T∈φ−1(O)

[eφ(T )]T by definition of φ∗,

= [degi φ]

 ∑
P ′∈φ−1(Q)

P ′ −
∑

T∈φ−1(O)
T

 from [III.4.10a Sil09],

= [degi φ] ◦ [#φ−1(Q)]P
= [deg φ]P from [III.4.10a Sil09].

By construction,

φ̂(Q) = φ̂ ◦ φ(P ) = [deg φ]P,

so the two maps are the same.

Definition 2 (Dual isogeny). Let φ : E1 → E2 be an isogeny. If φ 6= [0], then the dual
isogeny to φ is the isogeny given by Theorem 1 a). Otherwise it is defined to be [0].

We will now present some basic properties of the dual isogeny, from which we will deduce
several important corollaries, including a good description of the kernel of the map [m].

Theorem 3. Let φ : E1 → E2 be an isogeny.

a) Let m = deg φ, then

φ̂ ◦ φ = [m] on E1 and φ ◦ φ̂ = [m] on E2.
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b) Let λ : E2 → E3 be another isogeny. Then

λ̂ ◦ φ = φ̂ ◦ λ̂.

c) Let ψ : E1 → E2 be another isogeny. Then

φ̂+ ψ = φ̂+ ψ̂.

d) For all m ∈ Z,

[̂m] = [m] and deg[m] = m2.

e) deg φ̂ = deg φ.

f) ˆ̂
φ = φ.

Proof. If φ is constant, then the theorem is trivial, and if λ and ψ are constant, then b)
and c) are trivial. So we can assume all isogenies to be nonconstant.

a) The first statement is the defining property of φ̂. For the second consider

(φ ◦ φ̂) ◦ φ = φ ◦ [m] = [m] ◦ φ.

Because φ is nonconstant, this implies φ ◦ φ̂ = [m].

b) We have already seen this in the proof of Theorem 1 a).

c) See [III.6.3c Sil09].

d) By definition, this is true for m = 0 and it is trivial for m = 1. By using c) with
φ = [m] and ψ = [1], we obtain

̂[m+ 1] = [̂m] + [̂1].

Then, by induction we see that [̂m] = [m] for all m ∈ Z.

Now let d = deg[m] and consider the map [d]:

[d] = [̂m] ◦ [m] = [m] ◦ [m] = [m2]

By [III.4.2b Sil09], the endomorphism ring of an elliptic curve is a torsion free Z-
module, so it follows that d = m2.

e) Let m = deg φ, then by d) and a), we obtain

m2 = deg[m] = deg(φ ◦ φ̂) = (deg φ)(deg φ̂) = m(deg φ̂).

Thus m = deg φ̂.
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f) Again, let m = deg φ, then by a), b) and d), we obtain

φ̂ ◦ φ = [m] = [̂m] = ̂̂φ ◦ φ = φ̂ ◦ ˆ̂
φ.

Therefore φ = ˆ̂
φ.

Definition 4 (quadratic form). Let A be an abelian group. A function

d : A→ R

is a quadratic form, if it satisfies the following conditions

i) d(α) = d(−α) for all α ∈ A.

ii) The pairing

A×A→ R, (α, β) 7→ d(α+ β)− d(α)− d(β)

is bilinear.

A quadratic form d is positive definite if it further satisfies the following conditions:

iii) d(α) ≥ 0 for all α ∈ A

iv) d(α) = 0 if and only if α = 0

Corollary 5. Let E1 and E2 be elliptic curves. The degree map

deg : Hom(E1, E2)→ Z

is a positive definite quadratic form.

Proof. Everything is clear except for the fact that the pairing

〈φ, ψ〉 = deg(φ+ ψ)− deg(φ)− deg(ψ)

is bilinear. To proof this, we use the injection

[−] : Z→ End(E1)

and compute

[〈φ, ψ〉] = [deg(φ+ ψ)]− [deg(φ)]− [deg(ψ)]

= φ̂+ ψ ◦ (φ+ ψ)− φ̂ ◦ φ− ψ̂ ◦ ψ
= φ̂ ◦ ψ + ψ̂ ◦ φ from Theorem 3 c)

Using Theorem 3 c again, we see that the last expression is linear in both φ and ψ.
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Lemma 6. Let A be a finte abelian group of order N r and suppose that for every D | N ,
we have #A[D] = Dr, where A[D] is the subgroup of A consisting of all elements of
order D. Then

A ∼=
( Z
NZ

)r
.

Corollary 7. Let E be an elliptic curve and let m ∈ Z with m 6= 0.

a) if m 6= 0 in K, then

E[m] = Z
mZ
× Z
mZ

.

b) If char(K) = p > 0, then one of the following is true:

i) E[pe] = {O} for all e ∈ N \ {0}.

ii) E[pe] = Z
peZ for all e ∈ N \ {0}

Proof. a) By the assumption on m and the fact, that deg[m] = m2, we know that [m]
is a finite separable map. So from [III.4.10c Sil09],

#E[m] = deg[m] = m2.

Similarly, for every integer d dividing M we have

#E[d] = d2.

Then by Lemma 6,

E[m] = Z
mZ
× Z
mZ

.

b) Let φ be the pth-power Frobenius morphism. Then

#E[pe] = degs[pe] from [III.4.10a Sil09]
= (degs(φ̂ ◦ φ))e from Theorem 3 a)
= (degs φ̂)e from [II.2.11b Sil09].

By Theorem 3 e) and [II.2.11c Sil09], we have

deg φ̂ = deg φ = p,

so there are two possible cases. If φ̂ is inseparable, then degs φ̂ = 1, so

#E[pe] = 1 for all e ∈ N \ {0}.
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Otherwise φ̂ is separable, so degs φ̂ = p and thus

#E[pe] = pe for all e ∈ N \ {0}.

Then we verify that this actually implies

E[pe] = Z
peZ

for all e ∈ N \ {0}.
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