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Preface

In the previous talk, we learned about simplicial complexes and maps. However, in the
usual case we are starting with topological spaces and continuous maps between them.
We already learned that it is possible to triangulate many topological spaces and by that
obtain simplicial complexes. This raises the question if something similar is possible for
continuous maps.

In this talk, we will introduce the notion of a simplicial approximation to a continuous
map of the underlying topological spaces of some simplicial complexes. It is a simplicial
map of the complexes which is “close” to the continuous map in some sense. We will see
that it is not always possible to find such a simplicial map. However, we will show that it
is possible to find subdivisions of the complexes which allow such an approximation. In
order to achieve this, we will introduce barycentric subdivision, which will be our main
tool.

For this, we will mainly follow [Mun84, §§14–16].
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Notation and Conventions

We will use the following notation and conventions:

• The non-negative integers are denoted by N and the real numbers are denoted
by R.

• If A and B are sets, then A ⊂ B means that A is a subset of B and equality is
permitted.

• If σ is a simplex, we denote the interior of σ by Intσ and the boundary of σ
by Bdσ.

• We will often use the term “complex” instead of “geometric simplicial complex”.

• If J is a set, let R(J) =
⊕
J R.

• In general, complexes lie in R(J) for some set J . If we work with finite complexes,
we will mention it explicitly.

• If K is a complex, let |K| be its underlying topological space, equipped with the
weak topology.

• If K is a complex, let K(p) denote its p-skeleton.
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1 Simplicial Approximation

In this chapter, we will define the notion of a simplicial approximation to a continuous
map of the underlying spaces of two complexes and see some examples.

Definition 1.1 (Star). Let K be a complex and let v be a vertex of K. The star of v,
denoted by St(v,K) is defined to be the union of the interiors of those simplices of K
that have v as a vertex. If it is clear which complex we are referring to, we sometimes
also write St v instead of St(v,K). The closure of this set is called the closed star of v
and is denoted by St(v,K) or St v.

Example 1.2. Consider the vertex v of the complex pictured in Figure 1.1. By defini-
tion, St v is exactly the gray part of the complex.

v

Figure 1.1: Star of a vertex of a 2-simplex

Definition 1.3 (Star condition). Let K and L be complexes and let h : |K| → |L| be a
continuous map. We say h satisfies the star condition with respect to K and L if for
each vertex v of K, there is a vertex w of L such that

h(St v) ⊂ Stw.

Lemma 1.4. Let K and L be complexes and let h : |K| → |L| satisfy the star condition
with respect to K and L. Choose a map f : K(0) → L(0) such that for each vertex v of K,

h(St v) ⊂ St f(v).

a) For σ ∈ K choose x ∈ Intσ and τ ∈ L with h(x) ∈ Int τ . Then f maps each vertex
of σ to a vertex of τ .

b) The map f is a simplicial map K → L.
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1 Simplicial Approximation

Proof. a) Let σ = v0 . . . vp, then x ∈ St vi for each i in {0, . . . , p}. Thus we have

h(x) ∈ h(St vi) ⊂ St f(vi).

Therefore h(x) has a positive barycentric coordinate with respect to each of the
vertices f(vi) for all i ∈ {0, . . . , p}. Hence these vertices form a subset of the vertex
set of τ .

b) By a), f carries the vertices of any simplex of K to the vertices of some simplex of L
and thus is a simplicial map f : K → L.

Definition 1.5 (Simplicial approximation). LetK and L be complexes and let h : |K| →
|L| be a continuous map. A simplicial map f : K → L that satisfies

h(St v) ⊂ St f(v)

for each vertex v of K is called a simplicial approximation to h.

Lemma 1.6. Let K and L be complexes and let f : K → L be a simplicial approximation
to the continuous map h : |K| → |L|. Given x ∈ |K|, there is a simplex τ of L such that
h(x) ∈ Int τ and f(x) ∈ τ .

Proof. This is an immediate consequence of a) of Lemma 1.4.

Theorem 1.7. Let K, L, and M be complexes and let h : |K| → |L| and k : |L| → |M |
be continuous maps. Let f : K → L and g : L→M be simplicial approximations to those
maps, respectively. Then g ◦ f is a simplicial approximation to k ◦ h.

Proof. Being the composition of two simplicial maps, g ◦ f is a simplicial map. For each
vertex v of K we have

h(St v) ⊂ St f(v),

because f is a simplicial approximation to h. Therefore

k(h(St v)) ⊂ k(St f(v)) ⊂ St(g(f(v))),

because g is a simplicial approximation to k.

Example 1.8. Let P and Q be the complexes pictured in Figure 1.2, whose underlying
topological spaces are homeomorphic to the circle and to the annulus, respectively. Let
P ′ be the complex obtained from P by inserting extra vertices as pictured. Let h be
the indicated continuous map, where we denote h(a) by A and similarly for the other
vertices. One easily checks that h does not satisfy the star condition with respect to P
and Q, but it does satisfy the star condition with respect to P ′ and Q. Thus it has a
simplicial approximation f : P ′ → Q. One such map is pictured. We denote f(a) by A′
and similarly for the other vertices.
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1 Simplicial Approximation
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Figure 1.2: Example of a simplicial approximation
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2 Barycentric Subdivision

In Example 1.8, we saw that if h : |K| → |L| is a continuous map, there need not
be a simplicial approximation K → L to it. In the example, we were however able
to get a simplicial approximation f : K ′ → L to h by “subdividing” K into a simplicial
complexK ′ with the same underlying topological space. In this chapter we will introduce
a specific construction, which will allow us to subdivide finite complexes into simplices
that are as small as desired. This construction is called barycentric subdivision and it
will prove to be very helpful in the next chapter.

Definition 2.1 (Subdivision). Let K be a complex. A complex K ′ is called a subdi-
vision of K if:

a) Each simplex of K ′ is contained in a simplex of K.

b) Each simplex of K equals the union of finitely many simplices of K ′.

Lemma 2.2. Let K be a complex.

a) If K ′ is a subdivision of K, then |K| and |K ′| are equal as topological spaces.

b) If K ′ is a subdivision of K and K ′′ is a subdivision of K ′, then K ′′ is a subdivision
of K.

Proof. a) Obviously the union of the simplices of K ′ coincides with the union of the
simplices of K. It follows that |K| and |K ′| are equal as sets.

Let A be closed in K and let τ ∈ K ′. Then τ ⊂ σ for some σ ∈ K and thus

A ∩ τ = (A ∩ σ) ∩ τ.

But (A∩σ) is closed in σ, by definition, so A∩ τ is closed in τ , because the topology
on τ is the subspace topology of σ. Therefore A is closed in K ′.

Conversely, let A be closed in K ′ and let σ ∈ K. Then σ = τ1 ∪ · · · ∪ τn for some
τ1, . . . , τn ∈ K ′ and thus

A ∩ σ = A ∩ (τ1 ∪ · · · ∪ τn) = (A ∩ τ1) ∪ · · · ∪ (A ∩ τn). (2.1)

By definition, the set A∩ τi is closed in τi. Let mi be the dimension of τi, then A∩ τi
is closed in Rmi+1, because τi is closed in Rmi+1. If m is the dimension of σ, then
m ≥ mi and therefore A ∩ τi is closed in Rm+1. But σ carries the subspace topology
of Rm+1, thus A∩ τi is closed in σ. Hence, by (2.1), A∩σ is the finite union of closed
sets and thus is closed.
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2 Barycentric Subdivision

b) This is an immediate consequence of the conditions in Definition 2.1.

Lemma 2.3. Let K be a complex and let K ′ be a subdivision of K. Then for each
vertex w of K ′, there is a vertex v of K such that

St(w,K ′) ⊂ St(v,K).

Indeed, if σ is the simplex of K such that w ∈ Intσ, then this inclusion holds if and only
if v is a vertex of σ.

Proof. If this inclusion holds, w lies in some open simplex which has v as a vertex,
because w ∈ St(w,K ′).

Conversely, suppose w ∈ Intσ and v is a vertex of σ. It suffices to show that

|K| \ St(v,K) ⊂ |K| \ St(w,K ′).

The set on the left side of the inclusion is the union of those simplices of K that do not
have v as a vertex. Thus it is also the union of some simplices of K ′. No such simplex
can have w as a vertex, because w ∈ Intσ ⊂ St(v,K). Hence any such simplex lies
in |K| \ St(w,K ′).

Lemma 2.4. If K is a complex, then the intersection of any collection of subcomplexes
of K is a subcomplex of K. Conversely, if (Kα)α∈I is a collection of complexes and if
the intersection |Kα| ∩ |Kβ| is the polytope of a subcomplex of both Kα and Kβ for every
pair α, β, then the union

⋃
α∈I Kα is a complex.

Proof. This follows immediately from the definition of subcomplexes.

Lemma/Definition 2.5 (Cone). Let K be a complex and let w be a point of R(J) such
that each ray emanating from w intersects |K| in at most one point. We define the cone
on K with vertex w to be the complex consisting of all simplices of the form wa0 . . . ap
where a0 . . . ap is a simplex of K, along with the faces of all such simplices. We denote
this complex by w ∗K. The complex K is called the base of the cone and it is actually
a subcomplex of w ∗K.

Proof. First we show that the set w, a0, . . . , ap is geometrically independent for all sim-
plices a0 . . . ap of K. If w was in the plane P determined by a0, . . . , ap, we could consider
the line segment joining w and an interior point x of σ = a0 . . . ap. Since Intσ is open
in P , it would contain an interval of points of the line segment contradicting the fact
that, by hypothesis, the ray from w through x intersects |K| in only one point.

Now we show that w ∗K is a complex. There are three types of simplices in w ∗K:

• Simplices a0 . . . ap of K.

• Simplices of the form wa0 . . . ap for a simplex a0 . . . ap of K.
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2 Barycentric Subdivision

• The 0-simplex w.

Because K is a complex, any two simplices of the first type have disjoint interiors. The
open simplex Int(wa0 . . . ap) is the union of all open line segments joining w to points of
Int(a0 . . . ap). No two such open simplices can intersect, because no ray from w contains
more than one point of |K|. For the same reason, simplices of the first and second types
have disjoint interiors. Thus any two simplices of w ∗ K have disjoint interiors, which
makes w ∗K a complex.

We have already seen above that all simplices of K are also simplices of w ∗K, so K is
a subcomplex of w ∗K.

Lemma/Definition 2.6 (Starring). Let K be a complex and Lp a subdivision of the
p-skeleton of K. If σ is a (p + 1)-simplex of K, the space Bdσ is the polytope of a
subcomplex of the p-skeleton of K. Thus it is also the polytope of a subcomplex Lσ of Lp.
For wσ ∈ Intσ the cone wσ ∗ Lσ is a complex whose underlying space is σ. Now for
each σ ∈ K(p+1), let wσ ∈ Intσ. Then we define Lp+1 to be the union of Lp and the
complexes wσ ∗ Lσ for all (p + 1)-simplices σ of K. We call Lp+1 the subdivision of
K(p+1) obtained by starring Lp from the points wσ.

Proof that Lp+1 is a complex. We first note that

|wσ ∗ Lσ| ∩ |Lp| = Bdσ.

Thus |wσ ∗ Lσ|∩|Lp| is the polytope of Lσ which is a subcomplex of both wσ ∗Lσ and Lp.
If τ is another (p+ 1)-simplex of K, we have

|wτ ∗ Lτ | ∩ |wσ ∗ Lσ| = τ ∩ σ.

Because σ ∩ τ is a face of both σ and τ , the space |wσ ∗ Lσ| ∩ |wτ ∗ Lτ | is the polytope
of a subcomplex of both wσ ∗Lσ and wτ ∗Lτ . So Lp+1 is a complex by Lemma 2.4.

In the above definition, the complex Lp+1 depends on the choice of the points wσ. The
usual point used in this case is the following:

Definition 2.7 (Barycenter). For σ = v0 . . . vp, the barycenter of σ is defined as

σ̂ =
p∑
i=0

1
p+ 1vi.

It is the point of Intσ whose barycentric coordinates with respect to σ are all equal.

Definition 2.8 (Barycentric subdivision). Let K be a complex. We define a sequence
of subdivisions of the skeletons of K as follows: Let L0 = K(0). For a subdivision Lp of
the p-skeleton of K let Lp+1 be the subdivision of K(p+1) obtained by starring Lp from
the barycenters of the (p+ 1)-simplices of K. The union of these complexes is called the

6



2 Barycentric Subdivision

first barycentric subdivision of K and it is denoted by sdK. By Lemma 2.4, sdK
is a complex.

The n-th barycentric subdivision of K is defined to be sdnK := sd . . . sd︸ ︷︷ ︸
n-times

K.

Example 2.9. Consider the complex K as pictured in Figure 2.1. Constructing its first
barycentric subdivision results in the complex sdK.

K sdK

Figure 2.1: Barycentric subdivision

Sometimes we need a more explicit description of the simplices of the first barycentric
subdivision. The following lemma contains such a description. If σ2 is a proper face
of σ1, let us use the notation σ2 ≺ σ1.

Lemma 2.10. Let K be a complex. Then sdK equals the collection of all simplices of
the form

σ̂1σ̂2 . . . σ̂n,

with σn ≺ · · · ≺ σ2 ≺ σ1.

Proof. We prove this by induction over the skeleta. It is obvious that simplices of sdK
lying in the subdivision of K(0) are of this form, because they are vertices of K and
v̂ = v for a vertex v.

Now suppose each simplex of sdK lying in
∣∣K(p)∣∣ is of this form. Let τ be a simplex

of sdK lying in
∣∣K(p+1)∣∣ but not in ∣∣K(p)∣∣. Then there is a (p+ 1)-simplex σ of K such

that τ is a simplex of σ̂ ∗Lσ, where Lσ is the first barycentric subdivision of the complex
consisting of the proper faces of σ. By induction hypothesis, each simplex of Lσ is of
the form σ̂1σ̂2 . . . σ̂n with σn ≺ · · · ≺ σ2 ≺ σ1 and σ1 is a proper face of σ. But then τ
is of the form

σ̂σ̂1σ̂2 . . . σ̂n

as desired.

With this result, one can easily define barycentric subdivision for abstract simplicial
complexes.
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2 Barycentric Subdivision

Theorem 2.11. Let K be a finite complex and let |K| be equipped with a metric that
generates its topology. Given ε > 0, there is an N ∈ N such that each simplex of sdN K
has diameter less than ε.

Proof. Because K is finite, |K| is a subspace of the euclidean space R(J), in which it
lies. If d1 and d2 are two metrics for |K| generating its topology, they are equivalent,
hence the identity maps (|K| , d1)→ (|K| , d2) and (|K| , d2)→ (|K| , d1) are continuous.
Therefore, because |K| is compact, they are uniformly continuous, by the uniform con-
tinuity theorem [Mun00, Theorem 27.6]. Thus d1 and d2 are uniformly equivalent, and
hence, given ε > 0, there is a δ > 0 such that any subset of |K| with d1-diameter less
than δ has d2-diameter less than ε and vice versa. Therefore, we may as well use the
metric of R(J), which is

|x− y| = max |xj − yj | .

This also shows that a metric on |K|, as required, always exists.

Step 1. We show that the diameter of a simplex σ = v0 . . . vp is equal to the number
l = max(|vi − vj |) which is the maximum distance between the vertices of σ.
Because vi, vj ∈ σ, we know diam σ ≥ l, so it remains to show the reverse inequality.

We first show that |x− vi| ≤ l for every x ∈ σ and every i ∈ {0, . . . , p}. Let
i ∈ {0, . . . , p} and consider the closed ball Bl(vi) with radius l and centre vi. It is
convex and thus, because it contains all vertices of σ, it contains σ. So |x− vi| ≤ l
for all x ∈ σ.

Now let us show that |x− z| ≤ l for all x, z ∈ σ. Given x ∈ σ, consider the closed
ball Bl(x). By the preceding result, this set contains all vertices of σ and thus,
because it is convex, it contains σ. Hence |x− z| ≤ l for x, z ∈ σ and we get
diam σ = l as desired.

Step 2. We now show that, if σ has dimension p, then for all z ∈ σ, we have

|σ̂ − z| ≤ p

p+ 1 diam σ.

To prove this, we compute

|vj − σ̂| =
∣∣∣∣∣vj −

p∑
i=0

1
p+ 1vi

∣∣∣∣∣
=
∣∣∣∣∣
p∑
i=0

1
p+ 1(vj − vi)

∣∣∣∣∣
=

∣∣∣∣∣∣
p∑

i=0, i 6=j

1
p+ 1(vj − vi)

∣∣∣∣∣∣

8



2 Barycentric Subdivision

≤ 1
p+ 1

p∑
i=0, i 6=j

|(vj − vi)|

≤ p

p+ 1 max |vj − vi|

≤ p

p+ 1 diam σ.

This shows that the closed ball of radius p
p+1 diam σ with centre σ̂ contains all

vertices of σ and, because it is convex, it contains σ.

Step 3. We show that, if σ is a p-simplex and τ is a simplex in the first barycenteric
subdivision of σ, then

diam τ ≤ p

p+ 1 diam σ.

We prove this by induction. For p = 0 the result is trivial, because 0-simplices
are vertices and the first barycentric subdivision of a vertex is simply the vertex
itself. Suppose now that the above equation is true in dimensions less than p. Let
σ be a p-simplex and τ be a simplex in the first barycentric subdivision of σ. By
Lemma 2.10, τ is of the form

σ̂1 . . . σ̂n,

where σ1, . . . , σn are faces of σ with σn ≺ · · · ≺ σ1. According to Step 1, we know

diam τ = max |σ̂i − σ̂j | ,

so it suffices to show that for two faces s and s′ of σ with s′ ≺ s, we have∣∣ŝ− ŝ′∣∣ ≤ p

p+ 1 diam σ.

For s = σ this follows from Step 2. If s is a proper face of σ of dimension q, then∣∣ŝ− ŝ′∣∣ ≤ q

q + 1 diam s ≤ p

p+ 1 diam σ.

The first inequality follows by the induction hypothesis while the second follows
from the fact that x 7→ x

x+1 is a monotonically increasing function for x ≥ 0.

Step 4. Let K be of dimension n and let d be the maximum diameter of any simplex
of K. Because the maximum dimension of any simplex in K is n and n 7→ n

n+1
is monotonically increasing for n ∈ N, we know that the maximum diameter of a
simplex in the N -th barycentric subdivision of K is at most

(
n
n+1

)N
d. But this

number is less than ε if N is large enough.
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3 The Simplicial Approximation
Theorem

We now show that if K and L are two complexes and h : |K| → |L| is a continuous
map, then there exists a subdivision K ′ of K such that there is a simplicial approxima-
tion K ′ → L to h. In the case that K is finite, this follows easily by using barycentric
subdivision. However, in the general case, a more sophisticated technique of subdivision,
called the generalized barycentric subdivision, is required.

Theorem 3.1 (The finite simplicial approximation theorem). Let K and L be complexes
and let K be finite. Given a continuous map h : |K| → |L|, there is an N ∈ N such that
h has a simplicial approximation sdN K → L.

Proof. The set A =
{
h−1(St(w,L)) | w ∈ L(0)} is an open covering of |K|. Because |K|

is a compact metric space, by the Lebesgue number lemma [Mun00, Lemma 27.5], there
is a number λ > 0 such that every subset of K with diameter less than λ is contained in
one of the elements of A. The number λ is called a Lebesgue number for A.

Now choose N such that each simplex of sdN K has diameter less than λ
2 . Then the

diameter of each star of a vertex of sdN K is less than λ and thus lies in h−1(Stw) for
some vertex w of L. But then h : |K| → |L| satisfies the star condition with respect
to sdN K and L and, by Lemma 1.4, the desired approximation exists.

Theorem 3.2 (The general simplicial approximation theorem). Let K and L be com-
plexes and let h : K → L be a continuous map. There is a subdivision K ′ of K such that
h has a simplicial approximation K ′ → L.

In order to prove this, we need some more techniques. As a first step, we will show how to
subdivide a complex K in a way that leaves a given subcomplex K0 of K unchanged.

Definition 3.3 (Barycentric subdivision, holding a subcomplex fixed). Let K be a
complex and let K0 be a subcomplex of K. We define a sequence of subdivisions of the
skeletons of K as follows: Let J0 = K(0). In general, suppose Jp is a subdivision of the
p-skeleton of K and each simplex of K0 of dimension at most p is also a simplex of Jp.
If σ is a (p + 1)-simplex of K, let Jσ be the subcomplex of Jp whose polytope is Bdσ.
Then let Jp+1 be the union of Jp, all (p+ 1)-simplices of K0, and the complexes σ̂ ∗ Jσ
for all (p+ 1)-simplices of K not in K0. The union of the complexes Jp is a subdivision

10



3 The Simplicial Approximation Theorem

of K which is called the first barycentric subdivision of K, holding K0 fixed and
is denoted by sd(K,K0).

As with barycentric subdivision, we can repeat this process to get the n-th barycentric
subdivision of K, holding K0 fixed, which we denote by sdn(K,K0).

Example 3.4. Consider the complex K and its subcomplex K0 as pictured in Fig-
ure 3.1. Constructing the first barycentric subdivision of K holding K0 fixed results in
the complex sd(K,K0).

K

K0

sd(K,K0)

Figure 3.1: Barycentric subdivision, holding a subcomplex fixed

The reason that barycentric subdivision does not suffice in the general case is the fact
that the Lebesgue number argument in the proof of Theorem 3.1 requires |K| to be
compact. For a general complex , the number λ which measures how finely a simplex
must be subdivided may vary between the different simplices. We will now generalize
our notion of barycentric subdivision to accommodate for this.

Definition 3.5 (Generalized barycentric subdivision). Let K be a complex. Let N be
a function assigning to each simplex of K with positive dimension, a number N(σ) ∈ N.
We construct a subdivision of K as follows: Let L0 = K(0). In general, suppose Lp
is a subdivision of the p-skeleton of K. For each (p + 1)-simplex of K, let Lσ be the
subcomplex of Lp whose polytope is Bdσ. Now let Lp+1 be the union of Lp and the
complexes

sdN(σ)((σ̂ ∗ Lσ), Lσ),

as σ ranges over all (p + 1)-simplices of K. Then Lp+1 is a subdivision of the (p +
1)-skeleton of K. The union of the complexes Lp is a subdivision of K called the
generalized barycentric subdivision of K corresponding to the function N(σ).

The following lemma shows the difference between sdK and sd(K,K0) for a complex K
and a subcomplex K0 of K.

Lemma 3.6. Let K be a complex and let K0 be a subcomplex of K.

11



3 The Simplicial Approximation Theorem

a) If τ is a simplex of sd(K,K0), then τ is of the form

τ = σ̂1 . . . σ̂qv0 . . . vp,

where s = v0 . . . vp is a simplex of K0 and σ1, . . . , σq are simplices of K not in K0
with s ≺ σq ≺ · · · ≺ σ1.

b) Either v0 . . . vp or σ̂0 . . . σ̂q may be missing from this expression. The simplex τ is
disjoint from |K0| if and only if v0 . . . vp is missing. In this case, τ is a simplex
of sdK.

Proof. a) Let Jp as in Definition 3.3 for all p ≤ dimK. The result is true for τ ∈ J0. In
general, let τ be a simplex of Jp+1 that is not in Jp. Then either τ belongs to K0,
in which case τ is of the form v0 . . . vr, or τ belongs to one of the cones σ̂ ∗ Jσ. By
the induction hypothesis, each simplex of Jσ is of the form σ̂1 . . . σ̂qv0 . . . vr, where
σ1 ≺ σ. But then τ = σ̂σ̂1 . . . σ̂qv0 . . . vr, as desired.

b) Let τ = σ̂1 . . . σ̂qv0 . . . vp. If v0 . . . vp is not missing from this expression, then τ
intersects |K0| in v0 . . . vp, at least. Conversely, if the set τ ∩ |K0| is non-empty, then
it contains a face of τ and thus a vertex of τ . Since none of the points σ̂1, . . . , σ̂q is
in |K0|, the term v0 . . . vp cannot be missing.

To prove Theorem 3.2 we need to show that given a continuous map h : |K| → |L|, there
is a subdivision K ′ of K such that h satisfies the star condition with respect to K ′ and
L. This is equivalent to the following statement: If A is the open covering of |K| defined
by

A =
{
h−1(St(w,L))

∣∣w ∈ L(0)},
then there is a subdivision K ′ of K such that the collection

B =
{

St(v,K ′)
∣∣v ∈ K ′(0)}

refines A, that is each element of B is contained in some element of A.

We will actually prove a slightly stronger statement. We will construct a subdivision K ′
of K, which is fine enough that the collection

{
St(v,K ′)

∣∣v ∈ K ′(0)} of closed stars in
K ′ refines A.

The following lemma is a big step towards this goal, because it will allow us to carry out
the induction step of the proof.
Lemma 3.7. Let K = p ∗ B be a cone over a finite complex B. Let A be an open
covering of |K|. Suppose for each vertex v of B there is an element Av of A such that

St(v,B) ⊂ Av.

Then there is an N ∈ N such that the collection of closed stars of sdN (K,B) refines A,
and furthermore such that for each vertex v of B

St
(
v, sdN (K,B)

)
⊂ Av.

12



3 The Simplicial Approximation Theorem

Proof. Since B is a finite complex, |B| lies in Rm × {0} for some m. Without loss of
generality we assume p = (0, . . . , 0, 1) ∈ Rm × R. Let n = dimK.

Step 1. In general, the maximum diameter of the simplices of sdN (K,B) does not go to
zero as N increases. For if σ ∈ K has a face in B with positive dimension, that
face never gets subdivided. However, as N increases, the simplices that intersect
the plane Rm × {0} lie closer and closer to this plane. More generally, we show:
If K ′ is any subdivision of K that keeps B fixed and if the simplices of K ′ that
intersect Rm × {0} lie in the strip Rm × [0, ε] for ε > 0, then any simplex τ of
sd(K ′, B) that intersects Rm × {0} lies in the strip Rm ×

[
0, n

n+1ε
]
.

Now τ is of the form σ̂1 . . . σ̂qv0 . . . vp as in Lemma 3.6. If τ intersects Rm × {0},
but does not lie in it, neither σ̂0 . . . σ̂q nor v0 . . . vp are missing from this expression.
Additionally, each vertex vi lies in Rm × {0}.

Consider the vertex σ̂j of τ . The simplex σj of K ′ intersects Rm × {0}, because
σj has v0, . . . , vp as a face. Therefore σj ⊂ Rm × [0, ε]. Let w0, . . . , wk be the
vertices of σ and let π : Rm × R → R be the projection onto the last coordinate.
Then π(wi) ≤ ε for all i ∈ {0, . . . , k} and π(wi) = 0 for at least one i ∈ {0, . . . , k}.
Therefore

π(σ̂j) =
k∑
i=0

( 1
k + 1

)
π(wi) ≤

(
k

k + 1

)
ε.

Thus each vertex of τ lies in Rm ×
[
0, n

n+1ε
]
and, because this set is convex, so

does all of τ .

Step 2. Let KN denote the complex sdN (K,B). We show that there is an N0 ∈ N such
that if N ≥ N0, then for each v ∈ B(0),

St(v,KN ) ⊂ Av. (3.1)

To prove this, consider the continuous map

ρ : |B| × I → |K| , (x, t) 7→ (1− t)x+ tp.

Because K is the cone on B with vertex p, it carries St(v,B) × I onto St(v,K).
Furthermore, since

(π ◦ ρ)(x, t) = (1− t)π(x) + tπ(x) = (1− t) · 0 + t · 1 = π(x, t),

it preserves the last coordinate. The set St(v,B) is compact, so, by the tube lemma
[Mun00, Lemma 26.8], there is a δ > 0 such that

St(v,B)× [0, δ] ⊂ ρ−1(Av).

13



3 The Simplicial Approximation Theorem

Therefore the set

St(v,K) ∩ (Rm × [0, δ]) = ρ
(

St(v,B)× [0, δ]
)

lies in Av.

By applying Step 1, we choose N0 ∈ N such that for N ≥ N0, each simplex of KN

that intersects Rm × {0} lies in Rm × [0, δ]. If v ∈ B(0), the set St(v,KN ) lies
in Rm × [0, δ], but this set also lies in St(v,K), so it is a subset of Av, as desired.

Step 3. Now let N0 be as in Step 2. Consider the complex KN0+1. Let P be the union
of all simplices of KN0+1 that intersect B and let Q be the union of all simplices
of KN0+1 that do not intersect B. We claim the following: If N ≥ N0 + 1, then
for each w ∈ K(0)

N with w ∈ P and w /∈ |B|, there is an A ∈ A such that

St(w,KN ) ⊂ A. (3.2)

We first prove this in the case N = N0 + 1. The space P is the polytope of a
subcomplex of KN0+1, by definition. If w ∈ K(0)

N with w ∈ P and w /∈ |B|, then,
by Lemma 3.6, w = σ̂ for some simplex σ of KN0 that intersects B but does not
lie in B. Let v be a vertex of σ lying in B. Because w ∈ Intσ, we have

St (w,KN0+1) ⊂ St (v,KN0) ,

by Lemma 2.3. Then

St (w,KN0+1) ⊂ St (v,KN0) ⊂ Av,

by (3.1).

Now we prove (3.2) in the case N > N0 + 1. If w′ ∈ K
(0)
N with w′ ∈ P , then

w′ ∈ St(w,KN0+1) for some vertex w of KN0+1 lying in P . By Lemma 2.3, we
have St(w′,KN ) ⊂ St(w,KN0+1). Therefore

St(w′,KN ) ⊂ St(w,KN0+1) ⊂ Av,

as desired.

Step 4. Let λ be a Lebesgue number for A. Consider the space Q. It is the polytope of
a subcomplex J of KN0+1. In forming the subdivision KN0+2, each simplex of J is
subdivided barycentrically, by Lemma 3.6. Thus sd J is a subcomplex of KN0+2.
By repeating this argument, we see that in general sdM J is a subcomplex of
KN0+M .

Now choose M large enough that the diameter of each simplex of sdM J is less
than λ

2 . If N ≥ N0 + 1 +M and w ∈ K(0)
N with w /∈ P , we claim there is an A ∈ A

such that
St(w,KN ) ⊂ A. (3.3)

14



3 The Simplicial Approximation Theorem

This claim is true, for if w /∈ P , each simplex of KN having w as a vertex lies in Q
and thus is a simplex of sdM J . Therefore St(w,Kn) has diameter less than λ and
hence is contained in an element of A.

The combination of (3.1), (3.2), and (3.3) proves the lemma.

Theorem 3.8. Let K be a complex and let A be an open covering of |K|. There exists
a generalized barycentric subdivision K ′ of K such that the collection{

St(w,K ′)
∣∣w ∈ K ′(0)}

of closed stars refines A.

Proof. We proceed step-by-step. Initially, let L0 = K(0) and for each v ∈ K(0) choose
an Av ∈ A with v ∈ Av.

In general, we assume a subdivision Lp of K(p) and a map fp : L(0)
p → A, v 7→ Av with

St(v, Lp) ⊂ Av

are given. We define a subdivision Lp+1 of the (p + 1)-skeleton of K and a map fp+1
as follows: For each (p+ 1)-simplex σ of K, let Lσ denote the subcomplex of Lp whose
underlying space is Bdσ. Consider the cone σ̂∗Lσ. By Lemma 3.7, there is an N(σ) ∈ N
such that if we let

C(σ) = sdN(σ)(σ̂ ∗ Lσ, Lσ),

then the following holds: For each vertex v of C(σ) belonging to Lσ,

St(v, C(σ)) ⊂ Av,

and for each vertex w of C(σ) not in Lσ, there exists an A ∈ A such that

St(w,C(σ)) ⊂ A.

Let Lp+1 be the union of Lp and the complexes C(σ), as σ ranges over all (p+1)-simplices
of K.

If v ∈ L(0)
p , then St(v, Lp+1) is the union of the sets St(c, Lp) and St(v, C(σ)), as σ ranges

over the (p + 1)-simplices of K containing v. By construction, each of these sets is a
subset of Av, so we define fp+1(v) to be fp(v).

If w is a vertex of Lp+1 not in Lp, then w lies in the interior of some (p+ 1)-simplex σ
of K. Therefore

St(w,Lp+1) = St(w,C(σ)),

thus St(w,Lp+1) is contained in some A ∈ A. We define fp+1(w) to be such an ele-
ment Aw of A.
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3 The Simplicial Approximation Theorem

The complex K ′ is defined to be the union of the complexes Lp. Let f : K ′(0) → A be
defined as follows: If v ∈ K ′(0), then v ∈ L(0)

p for some p. Then let f(v) = fp(v). This
is well-defined, for if v ∈ L(0)

p and v ∈ L(0)
q , then fp(v) = fq(v), by definition.

If v ∈ K ′(0), let p be the minimum number such that v ∈ L(0)
p . Then

St(v, Lp+k) ⊂ fp+k(v) = f(v) = Av

for all k ≥ 0, and hence St(v,K ′) ⊂ Av.

We are now finally able to prove the general simplicial approximation theorem.

Proof of Theorem 3.2. Let A be the covering of |K| defined by

A =
{
h−1(St(w,L))

∣∣w ∈ L(0)}.
Choose a subdivision K ′ of K whose closed stars refine A. Then h satisfies the star
condition with respect to K ′ and L.
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